
CODING EXERCISES - GEOMETRY

LUIGI LUNARDON

Introduction

The coding exercises in this problem sheet are meant to be an integration to the exercises
assigned during the Topics in Geometry course. They can be solved in Mathematica, Python,
C++, or whatever language you prefer. There is no particular order to follow; usually the code
required is not too advanced, and the math is already introduced in one of the topics lectures.
The exercises marked with ∗ are a bit more di�cult than the others, either because the code is
more involved, or because they require some more advanced background.

Acknowledgement. We would like to thanks all the LSGNT students who proposed some
exercises: Benjamin Aslan, Dougal Davis, Brad Doyle, Matthew Habermann, Ben Heuer, Jordan
Hofmann, Tim King, Thomas Sharpe, David Sheard, Bruno Ricieri Souza Roso, Samuel Stark,
Zak Turcinovic.

1. Geometry

Exercise 1 (Singular polynomial). Given a polynomial f ∈ C[x1, . . . , xn] write a program which
determines whether or not the associated variety {f(x1, . . . , xn) = 0} ⊂ Cn is smooth.

Exercise 2 (Resolution of singularities for plane curves ∗). The geometry of curves is often
simpler than the one of higher dimensional varieties. A good example is given by the problem
of resolution of singularities: we know that in characteristic 0 given a variety with any type of
singularity, then there exists an algorithmic embedded resolution of the singularities, obtained
by blow ups at smooth centers (this is a remarkable result by Hironaka); the situation is simpler
if the variety is a curve, and the algorithm becomes easier to implement (see [Ful89, Chapter
7]). Write a code that given a plane curve C:

(1) veri�es if C is smooth, and if not �nds the singular points of C;
(2) blows-up A2 in each singular points of C and compute the proper transform of C after

each blow-up;
(3) repeats the two previous points until we construct a resolution of C. Remember that

after each blow-up, you have to verify that the proper transform is smooth in each of
the coordinates charts.

Exercise 3 (Map associated to a line bundle). Given a rational curve of degree 5 in P3 it is
possible to show that it is always contained in a cubic surface. However, not all degree 5 rational
curves in P3 are contained in a quadric surface (see, for instance [Har77, Exercise 5.6.2]).

Consider a non-constant map φ : P1 → P3 of degree 5, its image is a rational curve of degree
5; write a program which determines whether or not this curve is contained in a conic.

Exercise 4 (Geodesics). Let X be a torus, �nd a parameterization of X in R3 and plot it.
Choose the equation of some geodesics in these coordinates and solve them numerically (you can
use the command in Mathematica NDSolve). Hence plot these geodesics on the torus.

Exercise 5 (Simplicial Homology ∗). To compute the homology with integer coe�cients of a
simplicial complex, it is enough to reduce the boundary maps to their Smith normal form. The
Smith normal form of an integer matrix A ∈ Matn,m is an integer matrix B ∈ Matn,m such that:

(1) there exist two invertible square matrices S and T such that B = SAT ;
(2) if i 6= j then Bi,j = 0;
(3) the diagonal elements satisfy Bi,i|Bi+1,i+1.

It can be proven that the diagonal elements are essentially unique. Implement an algorithm to
reduce an integer matrix to its Smith normal form, some suggestions can be found in [DHSW03].
Test your code by computing the simplicial homology of the following complexes: circle, 3-
simplex, RP2.
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Exercise 6 (Di�erential forms). Fix an n-dimensional vector space V and a basis BV . Write a
code that:

(1) associates to two forms ω1 ∈ ΛhV and ω2 ∈ ΛmV the interior product ω1∧ω2 ∈ Λh+kV ;
(2) determines whether or not there exist elements v1, . . . , vh+k ∈ V such that

ω1 ∧ ω2 = v1 ∧ · · · ∧ vh+k.

Exercise 7 (Chern classes). It is well known that the number or lines on a smooth cubic surface
is 27. It is possible to prove a little weaker result (i.e. that there are 27 lines on the generic cubic
surface) using Chern classes, see for instance [EH16, 6.2.1].

(1) Write a program that computes the expected number of lines on a general hypersurface
of degree 2n− 3 in Pn.

(2) Write a program that computes the expected number of 2-planes on a general quartic
hypersurface in P7 ([EH16, Exercise 6.47]).

Exercise 8 (Toric Geometry). To any fan of strongly convex rational cones ∆ ⊂ Rn it is possible
to associate a toric variety X, and a necessary preliminary step is the construction of the dual
fan ∆∗. The fan ∆ contains many important information about the toric variety. For instance,
X is smooth if and only if any cone σ ∈ ∆ is generated by a basis of the lattice SpanR(σ) ∩ Zn.
See [Ful93] for more details on these topics.

Let {v1, . . . , vm} ⊂ Z2 be a primitive set of generators of a complete fan ∆ ⊂ R2. Write a
program that:

(1) computes the dual fan ∆∗;
(2) deduces if the associated toric variety is smooth.

Exercise 9 (Degeneration of toric variety ∗). Let M be the lattice

M = {(x, y0, y1, . . . , yn) ∈ Zn+2 | y0 + · · ·+ yn = 0}
and Σ0 ⊂ Zn+3 be de�ned as

Σ0 = {(x, y0, y1, . . . , yn, z) ∈ Zn+3 | y0 + · · ·+ yn = 0, z > 0, xz = y20 + y21 + · · ·+ y2n}..
Denote by Σ1 the convex hull of Σ0 in M ⊗ R ⊕ R ∼= Rn+2. De�ne an in�nite fan Σ in M ⊗ R
(supported on the half space x > 0) by projecting the faces of the polytope Σ1, and let X be the
associated non-�nite type toric variety (obtained by gluing together in�nitely many toric a�ne
charts). The group M0 = {(t0, t1, . . . , tn) | t0 + · · · + tn = 0} acts on M preserving Σ by the
formula

(t0, t1, . . . , tn) · (x, y0, y1, . . . , yn) = (x, y0 + xt0, . . . , yn + xtn).

Projection to the �rst coordinate M → Z de�nes a morphism X → A1 such that the generic
�bre is a torus. After taking the quotient byM0, the generic �bre is an abelian variety (isomorphic
to a product of copies of the Tate curve), and the special �bre (corresponding to x = 1 in the
fan) is a projective (toroidal) degeneration of this abelian variety. The following computation is
the �rst step in working out the natural cell decomposition of this degeneration into tori.

Describe the slice x = 1 for a set of representatives for the orbits of the top-dimensional cones
of Σ under the action of M0 for n = 1, 2, 3, 4. For n = 1 and 2 this is easy by hand, for n = 3, 4
it is better to use a computer.

Exercise 10 (Tropical Geometry). Let p ∈ C[x±11 , . . . , x±1r ] be a Laurent polynomial

p(x1, . . . , xr) =
∑
i∈I

cix
n1,i

1 . . . xnr,i
r

the tropicalization of p(x1, . . . , xr) is the function Trop(p) : Rr → R

Trop(p)(x1, . . . , xr) =
⊕
i∈I
|ci| ⊗ x

n1,i

1 ⊗ · · · ⊗ xnr,i
n = min

i∈I
(|ci|+ n1,ix1 + · · ·+ nr,ix

r) .

The associated tropical hypersurface Hp ⊂ Rr is de�ned to be the non di�erentiability locus of
Trop(p); this set coincides with the sets of points such that there exist two distinct elements
a, b ∈ I such that:

min
i∈I

(|ci|+ n1,ix1 + · · ·+ nr,ix
r) = |ca|+ n1,ax1 + · · ·+ nr,ax

r = |cb|+ n1,bx1 + · · ·+ nr,bx
r;

for a more detailed explanation see [MS15].
Given a polynomial p(x, y), write a program that draws the associated tropical curve.
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Exercise 11 (Hodge Theory). To a smooth projective variety X ⊂ Pn it is possible to associate
its Hodge-Deligne polynomial

H(x, y) =
∑
p,q≥0

(−1)p+qhp,q(X)xpyq, hp,q(X) = dim (Hq(X,Ωp)) .

If X = Xd1,...,dr ⊂ Pn+r is a smooth complete intersection, then it is possible to compute
the Hodge-Deligne polynomial knowing only the degrees d1, . . . , dr. The strategy to follow is
explained in [Hir66, Appendix one, Theorem 22.1.1 and Theorem 22.1.2].

Given a smooth complete intersection Xd1,...,dr
⊂ Pn+r, write a program that compute its

Hodge diamond and Hodge-Deligne polynomial.

Exercise 12 (Lie group and algebra ∗). Let G be a Lie Group and g the associated lie algebra.
Di�erential forms on G can be restricted to left-invariant di�erential forms, which are preserved
under the exterior di�erential. Thus it follows that the de Rham complex restricts to a complex
of left-invariant di�erential forms which gives rise to 'left-invariant' cohomology groups. It is a
theorem by Cartan that these are isomorphic to the de Rham cohomology groups if G is compact.
All the data in the left-invariant complex can be translated into linear maps between exterior
powers of g.

In this exercise we do these computations using G = SL(n), choose your favourite �eld.

(1) Compute the structure constants, roots and Weyl group of sln, see [Hum78].
(2) Compute the de Rham cohomology of SL(n). Can anything be said about the ring

structure?

Exercise 13 (Morse Theory). Fix two integers p, q ≥ 2 and consider the polynomial

f(x, y) = xpy + yqx.

By considering a linear projection from the smooth �ber to C, we can think of the smooth
�bre of the Morsi�ed function as the total space of an auxilliary �bration. Write a program in
Mathematica that:

(1) calculates the critical points of the Morsi�ed function, and plots the critical values;
(2) calculates the critical points of the auxiliary �bration above a given point and plot the

critical values;
(3) using the Mathematica function 'animate', track what happens to the critical values of

the auxiliary �bration as you move along a vanishing path. Show that for any vanishing
path, precisely two of the critical values of the auxiliary �bration come together.

2. Number Theory

Exercise 14 (Power division function). Write a program that for given k, n ∈ N compute the
power divisor function

σk(n) =
∑

0<d|n

dk.

Exercise 15 (Elliptic curves ∗). Let y2z−(x3+azx2+bxz2+cz3) ⊂ K[x, y, z] be a non-singular
polynomial. This polynomial de�nes a smooth elliptic curve C ⊂ P2.

Elliptic curves admit a structure of abelian group, we choose as identity the point E = [0, 1, 0],
and the sum is de�ned as following. Given two points P,Q ∈ C, the point −(P + Q) is the
third intersection point between the line through P and Q and C (intersection is counted with
multiplicity). To �nd the point P +Q we have just to repeat the previous construction, with the
points −(P +Q) and E. Choose a, b, c ∈ Z and write a program that:

(1) given a couple of distinct points P,Q ∈ C produces as output the coordinates of the
point P +Q,

(2) given a point P ∈ C and an integer n, computes the value of nP ; to compute 2P , consider
the tangent line to C passing through P .

(3) Modify your code to make it works over Fp, remember to verify that the elliptic curve
is still smooth after reduction modulo p.

(4) Use the previous points to calculate the canonical height of a point up to a desired
precision.

(5) Consider the curve given by the equation y2 = x3− 7x+ 10. Show that this curve has at
least 27 points with integer coordinates; consider the subgroup generated by P = [1, 2, 1]
and Q = [2, 2, 1]. ([Har77, 4.4.18])
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Exercise 16 (Generalized theta series ∗). Chose a positive-de�ned quadratic form Q and,
using the theory of generalized theta series, write a program which computes the representation
numbers

rQ(n) = #{v ∈ Z4 : vtQv = n}, n ∈ N.

Exercise 17 (Modular forms). For this exercise, we recommend to use either Sage or Magma,
with one of the packages for modular forms (without them, the �rst part is a starred exercise).

(1) This part is just to get familiar with some of the commands in the package: de�ne some
character, pick a weight, and compute a basis for some space of modular forms. Compute
the Hecke operators, compute some eigenforms and see that their q-expansions are as
desired.

(2) (∗) Write a code that, given a modular form f1 of some tame level N coprime to p,
weight k and some character χ1 that's rami�ed at p, veri�es if it is true that for any
character χ2 satisfying χp

2 ≡ χ1 mod p, there is a modular form f2 such that fp2 ≡ f1
in q-expansion.
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