
Additional Exercises for ‘Topics in Geometry’.

Connections and Curvature.

Exercise 1. Let V be a vector space over R of dimension n. We consider multi-
linear maps

R W V � V � V � V! R

which are ‘algebraic curvature tensors’ in the sense that

R.x; y; z; w/ D �R.y; x; z; w/ D �R.x; y;w; z/

R.x; y; z; w/CR.x; z; w; y/CR.x;w; y; z/ D 0:

for all x; y; z; w 2 V.
(i) Any such R satisfies R.x; y; z; w/ D R.z;w; x; z/, and if R.x; y; x; y/ D 0 for
all x; y 2 V, then R D 0.
(ii) The dimension of the space of algebraic curvature tensors is n2.n2 � 1/=12.
(iii) Assume now that V carries an inner product .�; �/. The multilinear mapQ given
by Q.x; y; z; w/ D .x; z/.y;w/ � .y; z/.w; x/ is an algebraic curvature tensor.
Suppose thatR is an algebraic curvature tensor, and defineK.P / D R.p1; p2; p1; p2/
for any plane P � V with orthonormal basis .p1; p2/. If there exists a constant K
with K D K.P / for all P , then R D KQ. [Show that for any basis .x; y/ of P we
have K.P / D R.x; y; x; y/=Q.x; y; x; y/ and use (i).]
(iv) Use (iii) to deduce an expression for the Riemann curvature tensor of Sn.

Exercise 2. Let 
 be a loop in S2 with p D 
.0/ D 
.1/. The parallel transport
map P
 is in SO.TS2p/, and hence corresponds to an angle � 2 R=2�Z (‘holonomy
angle’).
(i) Compute the holonomy angle in the case where 
 is circle of latitude.
(ii) More generally, derive an expression for the holonomy angle for any simple
closed loop 
 . [Use the Gauss-Bonnet formula.]

Chern Classes.

Exercise 3. Suppose that the tangent bundle of real projective n-space is trivial.
Show that n C 1 is a power of 2. [Compute the total Stiefel-Whitney class of the
tangent bundle].
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Exercise 4. Let M be a compact oriented smooth manifold of dimension m.
(i) Let a1; : : : ; ar be a basis of H�.M;Q/, and b1; : : : ; br be the dual(1) basis. Then
the Poincare dual of the diagonal � � M �M can be expressed as

ı D

rX
kD1

.�1/jak jak � bk;

where � is the cross product in cohomology. [Show that both sides have the same
intersection form with bi � aj for all i; j with jbi j C jaj j D m. ]
(ii) Use (i) to deduce the equalityZ

M
e.TM/ D

mX
iD0

.�1/i dimQ Hi.M;Q/:

How is this related to the Gauss-Bonnet theorem and the Poincare-Hopf theorem?
[Let � W M ! M � M be the diagonal map. Then TM ' ��N�=M�M implies
e.TM/ D �

�ı.]

Exercise 5. (i) The tangent bundle of a Lie group G is trivial, in particular ori-
entable. Use exercise 5 to conclude that �.G/ D 0 if G is compact.
(ii) Let G be a compact connected Lie group with Lie algebra g. If G is not com-
mutative, then H3.GIR/ ¤ 0. [Let h�;�i be a bi-invariant Riemannian metric on
G. The multilinear map g � g � g ! R given by .x; y; z/ 7! hŒx; y�; zi induces
a bi-invariant 3-form � on G. Prove that � is closed but not exact (if it were, we
would have � D 0).]
(iii) For which n does Sn admit a Lie group structure? [A commutative compact
connected Lie group must be a torus (the exponential map is a surjective morphism
of Lie groups).]
(iv) Show that the tangent bundle of S7 is trivial. [Use the octions to define a trivi-
alisation.]

Exercise 6. Assume there exists a polynomial Td.T1;T2;T3/ D ˛T31CˇT1T2C

T3 such that for every smooth projective 3-fold X we have

�.OX/ D

Z
X

Td.c1; c2; c3/

Show that ˛ D 
 D 0 and ˇ D 1=24. [Consider X D P3;P2 � P1;P1 � P1 � P1 to
get a system of three equations in ˛; ˇ; 
 .]

Exercise 7. (i) Let C � S be a smooth curve in a smooth projective surface S.
Prove the formula Z

C
c1.NC=S/ D

Z
S

DŒC�c1.S/ � �.C/;

(1) With respect to the intersection form.
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where DŒC� is the Poincaré dual of ŒC�.
(ii) Use (i) to deduce the degree-genus formula for C � S D P2.

Exercise 8. (i) Show that there exists an exact sequence (Euler sequence)

0! O! O.1/˚.nC1/ ! TPn ! 0:

How is it related to the tautological exact sequence? Compute c.TPn/.
(ii) Compute the Euler characteristic

�.X/ D
Z

X
cn�1.TX/

of a smooth hypersurface X � Pn of degree d . [Consider the short exact sequence
0! TX ! TPnjX! NX=Pn ! 0:]

Exercise 9. (i) Let E be a vector bundle of rank e, and L a line bundle. Prove

ct.E˝L/ D
eX

jD0

cj .E/ct.L/
e�j tj :

(ii) Let Pn D P.V/ with tautological subbundle S and quotient bundle Q, and q
(resp. p) denote the first (resp. second) projection of Pn�Pn. Construct a morphism
of bundles q�S ! p�Q whose zero locus is exactly the diagonal � � Pn � Pn.
[Use the tautological exact sequence; at a point .x; y/ 2 Pn � Pn corresponding to
Lx;Ly � V the map on fibres should be Lx ! V=Ly .]
(iii) Use (i) and (ii) to compute the class

ı 2 Hn.Pn � PnIZ/ D ZŒ˛; ˇ�=.˛nC1; ˇnC1/

Poincaré dual to the diagonal.

Exercise 10 (Yau). (i) Consider the intersection Z � P3 � P3 of the hypersur-
faces

x30 C x
3
1 C x

3
2 C x

3
3 D 0;

y30 C y
3
1 C y

3
2 C y

3
3 D 0;

x0y0 C x1y1 C x2y2 C x3y3 D 0:

Compute �.Z/ D �18. [View Z as the zero scheme of a section of the vector bundle
E D O.3; 0/˚ O.0; 3/˚ O.1; 1/. Note that�

c.TP3�P3/

c.E/

�
3

c3.E/ D �18˛
3ˇ3

in Hn.Pn � PnIZ/ D ZŒ˛; ˇ�=.˛nC1; ˇnC1/.]
(ii) Let � be a primitive third root of unity, and consider the automorphism � D
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�1 � �2 of P3 � P3 given by

�1.Œx0 W x1 W x2 W x3�/ D Œx1; x2; x0; �x3�;

�2.Œy0 W y1 W y2 W y3�/ D Œy1; y2; y0; �
2y3�:

Show that the cyclic group † generated by � acts freely on Z, and conclude that
X D Z=† has �.X/ D �6. [If a finite group G acts on a compact manifold M, then
�.MG/ D 1

#G

P
g2G �.M

g/.]

Complex Manifolds.

Exercise 11. (i) Let X be a smooth projective variety of dimension d . Show that
H2k.XIC/ ¤ 0 for k 6 d . [Embed X into some projective space and consider the
intersection of X with linear subspace.]
(ii) Which spheres Sn can be the underlying topological space of a smooth projective
variety?

Exercise 12. (i) Show that if Sn admits an almost complex structure, then SnC1

is parallelisable. [Let e1; : : : ; enC2 be the standard basis of RnC2, view Sn as the
unit sphere in RnC1 D he1; : : : ; enC1i. Use the almost complex structure J on Sn to
define for every p 2 SnC1 a linear map �p W RnC1 ! TSnC1p such that the vector
bundle map � W SnC1 � RnC1 ! TSnC1, .p; v/ 7! .p; �p.v// is an isomorphism.
Note that any p 2 RnC2 can uniquely be written as p D ˛enC2 C ˇs with s 2 Sn,
˛ 2 R, ˇ > 0.]
(ii) View S6 as the purely imaginary octonions of norm one, and use octonionic
multiplication to define an almost complex structure on S6. Compute the Nijenhuis
tensor to show that it is not integrable.

Exercise 13 (Borel-Serre). Show that if a sphere S2n admits an almost complex
structure, then n 6 3. [If S2n has an almost complex structure, then the tangent
bundle T of S2n is a complex vector bundle. Compute the Chern character of T to
see that the top-dimensional part is cn.T/=.n � 1/Š. Assume that cn.T/ is divisible
by .n�1/Š in integral cohomology (this is nontrivial), and use exercise 5 to conclude
that 2 is divisible by .n � 1/Š.]

Hodge Theory.

Exercise 14. (i) Compute the Hodge numbers of P2 and P1 � P1.
(ii) Compute the Chern and Hodge numbers of P3 and a quadric threefold.

Exercise 15. Let X be a compact Kaehler manifold, and Z a complex submani-
fold of codimension c. Show that the Poincaré dual of ŒZ� lies in Hc;c.X/.

Exercise 16 (H.-C. Wang). Let X be a compact Kaehler manifold. Then TX is
trivial if and only if X is a torus. [Show that the Albanese map is an etale covering.]
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Exercise 17. Let X be a compact connected Kaehler manifold with vanishing
Ricci curvature.
(i) If ! is a holomorphic p-form, then r! D 0. [Compute �d! D r�r!. Notice
that �d! D 0, and integrate over X to conclude.]
(ii) Let x 2 X. Use (i) to deduce that the map H0.X; �p/ !

�
^
p.T 1;0p X/_

�Holx.X/

given by ! 7! !.x/ is an isomorphism.
(iii) Assume that Holx.X/ D SU.dim X/. Show that H0.X; �p/ D 0 for 0 < p <

dim X. [Use (i), and show that the representation ^p�_ (� the standard representa-
tion of SU.dim X/) is irreducible.]

Geometric Invariant Theory.

Exercise 18. We consider the action of C� on C4 with weight .1; 1;�1;�1/.
(i) Show that the algebra of invariants can be identified with

A0 D CŒX;Y;Z;W�=.XW � YZ/:

(ii) To form a GIT quotient, one also needs a linearisation. In our case this is nothing
but a Z-grading on AŒQ�, where A is the polynomial ring CŒX;Y;Z;W� with Z-
grading corresponding to the action of C� (i.e., X;Y 2 A1, Z;W 2 A�1, and A0 is
as in (i)); the GIT quotient is then Proj.AŒQ�0/. Consider the three gradings on AŒQ�
determined by Q 2 AŒQ��1, Q 2 AŒQ�0, Q 2 AŒQ�1, and denote by X�;X0;XC the
corresponding GIT quotients. Identify X0 with Spec.A0/, and X� (resp. XC) with
the blow up of X0 along along .X;Z/ (resp. .Y;W/). The induced rational map
X� ! XC is the Atiyah flop.

Equivariant Cohomology.

Exercise 19. Let G D Gr.2;V/ be the Grassmannian of lines in P3 D P.V/,
with tautological bundles S and Q. The torus T D .C�/4 acts on P3 by

.t0; t1; t2; t3/Œx0 W x1 W x2 W x3� D Œt
�1
0 x0 W t

�1
1 x1 W t

�1
2 x2 W t

�1
3 x3�:

(i) Show that there is an induced action of T on G, and that the fixed locus GT

consists of the 6 lines L� (where � D .�1; �2/ satisfies 0 � �1 < �2 � 3) given
by xi D 0, i ¤ �1; �2. For each � compute the T-equivariant Chern classes of the
T-equivariant vector bundles SL� D L� and NL�=G D TG;L� D Hom.L�;V=L�/
over Spec.C/. (These are nothing but linear representations of T; the T-equivariant
Chern classes are elements of H�T.�IQ/ ' Sym�.T_ ˝ Q/, where T_ is the group
of characters of T.)
(ii) Use (i) and the Atiyah-Bott integration formula to compute

�.G/ D
Z

G
c4.TG/:
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(iii) Use (i) and the Atiyah-Bott integration formula to computeZ
G
c1.S/

4
D 2;

and give a geometric interpretation of the result. [For the interpretation make use
of the definition of Chern classes via degeneracy loci; it is convenient to consider
c1.Q/ D c1.S/, since H0.G;S/ D 0 and H0.G;Q/ D V.]
(iv) Use and the Atiyah-Bott integration formula to computeZ

G
c4.Sym3.S_// D 27

and give a geometric interpretation of the result.

Deformation Theory.

Exercise 20. Let A be the category of Artin local C-algebras with C.
(i) Let X be an algebraic scheme, and x 2 X a closed point. Consider the functor
F D hX;x W A ! Set given by letting F.A/ be the set of morphisms of schemes
f W Spec.A/ ! X whose underlying map of spaces takes Spec.A/ to fxg. Show
that F is functorially isomorphic to Hom. OOX;x;�/.
(ii) Take X D Spec.CŒU;V�=.UV//, x D .U;V/. Show that tF D F.CŒT�=.T2//
is a C-vector space of dimension 2, with basis e; f given by e.U/ D T; e.V/ D 0,
f .U/ D 0; f .V/ D T.
(iii) Show that an element v D ae C bf 2 tF lifts to a morphism

V W CŒŒU;V��=.UV/! CŒT�=.T3/

if and only if a D 0 or b D 0.


